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Machine Learning

Lecture 11 - Variational Inference

Lecturer: Haim Permuter Scribe: Daniel Duenias

I. INTRODUCTION [2]

Statistical inference is the process of drawing conclusions such as punctual estima-

tions, confidence intervals or distribution estimations about some latent variables in a

population, based on some observed variables.

Bayesian inference is the process of producing statistical inference taking a Bayesian

point of view. Bayesian paradigm is embed in the so called Bayes theorem that expresses

the relation between the updated knowledge (the “posterior”), the prior knowledge (the

“prior”) and the knowledge coming from the observation (the “likelihood”). Let’s assume

a model where data x are generated from a probability distribution depending on an

unknown parameter θ and that the parameter θ is distributed p(θ). Then, when data x

are observed, we can update the prior knowledge about this parameter using the Bayes

theorem as follows
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The Bayes theorem tells us that the computation of the posterior requires three terms:

a prior, a likelihood and an evidence. The first two can be expressed easily as they are

part of the assumed model. However, the third term, requires to be computed such that

P (x) =

∫
θ

P (x|θ)P (θ). (1)

Although in low dimension this integral can be computed without too much difficulties,

it can become intractable in higher dimensions.

II. NOTATION

consider the following notations

• xn - an known observation vector of size n with the i’th coordinate xi.

• zm - a hidden/latent variable (equivalent to θ mentioned above) - vector of size m

with the i’th coordinate zi.

• z−i - a group of all the vector coordinates except of the i’th one. in general, upper

script notation is a vector and lower script means an entry in that vector.

III. VARIATIONAL INFERENCE

In this lecture we introduce Variational Inference (VI), a method that approximates

probability densities through optimization [2]. Throughout the lecture we will use VI on

a Bayesian mixture of Gaussians as an example. As mentioned earlier, we are interested

in computing the posterior distribution,

P (zm|xn) = P (zm, xn)

P (xn)
. (2)

IV. BAYESIAN MIXTURE OF GAUSSIANS

A Bayesian mixture of Gaussians is a model that assumes that the data is distributed

as a mixture of k Gaussians with the following parameters [3]:

• the expectation is also a random variable, normally distributed - µi ∼ N (0, σ2), i =

1, 2...k, for some known σ.

• given the expectation µi, the standard deviation of the Gaussian is 1 - Gi|µi ∼

N (µi, 1).
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• P (ci) - the probability that xi belongs to some Gaussian, i.e, the assignment of each

i’th observation, has a uniform distribution, ci ∼ Uniform(k).

We encode ci into ’one hot’ k sized vector. We then draw that xi|ci, µk ∼ N (cTi µ, 1).

define zm = (µk, cn),m = k + n, an m sized vector of hidden variables.

For a sample of size n, the joint density of latent and observed variables is,

P (xn, zm) =P (xn, cn, µk)

=P (µk)
n∏
i=1

P (ci)P (xi|ci, µk).
(3)

Here, the evidence is,

P (xn) =

∫
P (µk)

n∏
i=1

∑
ci

P (ci)P (xi|ci, µk). (4)

Therefore, eq. (2) is an equation with time complexity of numerically evaluating

Kdimensional integral - O(Kn) [1].

V. THE EVIDENCE LOWER BOUND (ELBO) [1]

In variational inference, we specify a family of densities over the latent variables -

q(zm). We then try to approximate the exact conditional distribution P (zm|xn) with that

densities family, i.e, find the closest q(zm) to the conditional distribution P (zm|xn). That

is done by solving the following optimization problem:

q∗(zm) = argmin
q(zm)

D(q(zm)||P (zm|xn)). (5)

We know that by definition,

D(q(zm)||P (zm|xn)) = Eq(zm)[log q(Z
m)]− Eq(zm)[logP (Z

m|xn)]. (6)

Therefor, using Bayes and logarithm rules we get,

D(q(zm)||P (zm|xn)) = Eq[log q(Z
m)]− Eq[logP (Zm, xn)] + Eq[logP (x

n)]. (7)

Expand the conditional knowing that p(xn) is not a function of the random variable Zm

and therefor Eq[logP (xn)] = logP (xn),

logP (xn) = D(q(zm)||P (zm|xn)) + Eq[logP (Z
m, xn)]− Eq[log q(Zm)]. (8)
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Noting the term Eq[logP (Z
m, xn)]−Eq[log q(Zm)] as ELBO and using the non negativity

of D we get,

logP (xn) =D(q(zm)||P (zm|xn)) + ELBO

≥ELBO.
(9)

And thereby its name - The Evidence (P (xn)) Lower Bound. Using eq. (9) and the fact

that w.r.t q(zm), logP (xn) = const, we can write D as,

D(q(zm)||P (zm|xn)) = −ELBO + const. (10)

So, by maximizing ELBO we actually minimize D(q(zm)||P (zm|xn)), therefore we

may solve the optimization problem

q∗(zm) =argmin
q(zm)

D(q(zm)||P (zm|xn))

=argmax
q(zm)

ELBO,
(11)

instead of solving eq. (5).

In addition, using Bayes and logarithms rules , ELBO can be written as,

ELBO =Eq[logP (Z
m)] + Eq[logP (x

n|Zm)]− Eq[log q(Zm)]

=Eq[logP (x
n|Zm)]−D(q(zm)||P (zm)).

(12)

Knowing eq. (12) and eq. (11), we can present another interpretation of our optimization

problem:

argmax
q(zm)

ELBO =argmax
q(zm)

Eq[logP (x
n|zm)]−D(q(zm)||P (zm))

=argmax
q(zm)

∑
q(zm) logP (xn|zm)−D(q(zm)||P (zm)).

(13)

Looking at eq. (13) we can see that there is a trade-off between minimizing D and

maximizing the sum. As for minimizing D, we would like q(zm) to be as close as

possible to P (zm), while as for maximizing the sum, we understand that q(zm) which

gives more weight to zm that make the term logP (xn|zm) bigger i.e, zm that contains

more information about xn, will get better results. As we can see, the more samples there

are, the more significant the term
∑
q(zm) logP (xn|zm) will be over the divergence.
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VI. COORDINATE ASCENT - ALTERNATING MAXIMIZATION PROCEDURE

We will use a method called coordinate ascent. This method is a maximization method

of a multi-variable functions. In this method we fix all the variables except one, maximize

the function as an normal one variable function, then again fix all the variables except

the next one and repeat. If the function is concave in all of its variables, the method will

get the global maximum, otherwise, a local one [4], [5].

Example 1 (maximizing two variable function using coordinate ascent) Suppose

we want to maximize f(x, y):

Algorithm 1: coordinate ascent / Alternating maximization procedure
Input: f(x, y).

Output: x, y of Local/Global maximum of f(x, y).

initiate y0 to some value.

solve x0 = max
x
f(x, y0)

i = 0

while f(xi, yi) not converged do
i = i+ 1

yi = max
y
f(xi−1, y)

xi = max
x
f(x, yi−1)

Compute f(xi, yi)
end

Return xi, yi

VII. COORDINATE ASCENT MEAN-FIELD VARIATIONAL INFERENCE [1]

In a mean-field variational family the latent variables are mutually independent. A

generic member of the family is

q(zm) =
m∏
i=1

q(zi). (14)

We assume that this is the case in our problem. Using Bayes and logarithm rules, we

can write ELBO as,
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ELBO = Eq[logP (x
n)] + Eq[logP (Z

m|xn)]− Eq[log q(Zm)]

= logP (xn) + Eq[logP (Z
m|xn)]− Eq[log q(Zm)]

= const+ Eq[logP (Z
m|xn)]−

n∑
i=1

Eq(zi)[log q(Zi)],

(15)

while the second transaction is because P (xn) is not random in q(zm) and the third one

is by using eq. (14). Applying coordinate ascent and fixing q(z−i) (all q(zm) except of

the i’th coordinate) we get,

argmax
q(zi)

ELBO = argmax
q(zi)

q(zi)Eq(z−i)[logP (Zi, z
−i|xn)]− Eq(zi)[log q(Zi)] + const,

(16)

∂ELBO

∂q(zi)
= Eq(z−i)[logP (Zi|z−ixn)]− log q(zi) + 1 = 0. (17)

Which yields,

log q∗(zi) ∝ Eq(z−i)[logP (zi|Z−ixn)], (18)

q∗(zi) ∝ exp(Eq(z−i)[logP (zi|Z−ixn)]). (19)

Therefore, coordinate ascent variational inference (CAVI) - algorithm may be written as:
Algorithm 2: CAVI
Input: model P (xn, zm), data xn.

Output: variation density q(zm) =
∏m

i=1 q(zi) and ELBO (evidance lower bound

of P (xn)).

Initialization - initiate q(zi) for some i.

while the ELBO has not converged do

for i = 1,2...m do
Set q(zi) ∝ exp(Eq(z−i)[logP (zi|Z−ixn)])

end

Compute ELBO = Eq[logP (Z
m, xn)]− Eq[log q(Zm)]

end

Return
∏m

i=1 q(zi), ELBO
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Note that in order to compute Eq[logP (Zm, xn)] we use,

Eq[logP (Z
m, xn)] =

∑
zm

q(zm) logP (xn, zm). (20)

VIII. CAVI FOR A BAYESIAN MIXTURE OF GAUSSIANS MODEL [1]

As we saw before, we need to find P (zm|xn) and the term is hard to compute so

we will approximate it with q(zm). In order to do so we will use the CAVI algorithm

modified to our example. We assume now that the mixture of Gaussians is defined by

the parameters ϕ,mk, sk as follows:

• the expectation is normally distributed - µi ∼ N (mi, s
2
i ), i = 1, 2...k.

• P (ci) - has a categorical distribution, ci ∼ ϕki (k sized vector of non-negative number

that sums to 1). Therefore, ϕ is an n ∗ k matrix - the row i is a k sized vector noted

ϕi.

That said we define the initialization of the algorithm like the model presented in section

IV: µi ∼ N (0, σ2), i = 1, 2...k, the expectation of each Gaussian (σ2 is a known hyper

parameter) and, ϕi ∼ Uniform(k), i = 1, 2...n. In each iteration we will update our

distributions parameters ϕ,mk, sk.

Let us evaluate the ELBO of the mixture assuming mean field family,

ELBO(ϕ,mk, sk) =
k∑
i=1

E[logP (µi);mi, s
2
i ]

+
n∑
j=1

E[logP (cj);ϕj] + E[logP (xj|cj, µk);ϕj,mk, (s2)k]

−
n∑
j=1

E[log q(cj;ϕj)]−
k∑
i=1

E[log q(µi;mi, s
2
i )].

(21)

Expanding equation (21) using equation (19) we derive that that the following holds:

ϕji ∝ exp(E[µi;mj, s
2
j ]xj − E[µ2

i ;mj, s
2
j ]/2). (22)

q(µi) ∝ exp(E[log p(µi) +
n∑
j=1

E[logP (xj|cj, µk);ϕj,m−i, (s2)−i]). (23)
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Continue developing those eqations we eventually get that the update for q(µi) is,

mi =

∑n
j=1 ϕjixj

1/σ2 +
∑n

j=1 ϕji
, s2i =

1

1/σ2 +
∑n

j=1 ϕji
. (24)

Therefore, we can write the algorithm as follows:
Algorithm 3: CAVI for mixture of Gussians model
Input: Data xn, number of components K, prior variance of component means

σ2.

Output: Variational densities q(µi;mi, s
2
i ) (Gaussian) and q(ci;ϕi)

(K-categorical).

Initialization as discribed in the beginning of this section.

while the ELBO has not converged do

for j = 1,2...n do
Set ϕji ∝ exp(E[µi;mj, s

2
j ]xj − E[µ2

i ;mj, s
2
j ]/2)

end

for i = 1,2...k do

Set mi =
∑n

j=1 ϕjixj

1/σ2+
∑n

j=1 ϕji

Set s2i =
1

1/σ2+
∑n

j=1 ϕji

end

Compute ELBO(ϕ,mk, (s2)k)

end

Return q(ϕ,mk, (s2)k)
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